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Linguistics

Natural language: any language that has evolved naturally in humans
Linguistics

– Syntax: form of sentences from words
– Semantics: meaning, and its relation to form
– Pragmatics: how context contributes to meaning

Natural language understanding (NLU) or natural language process-
ing (NLP) (computational linguistics, psycholinguistics) concern with
the interactions between computers and natural languages

– extracting meaningful information from natural language input
– producing natural language output

NLU vs. NLP
• Natural language is far away from understanding in linguistics

and AI, especially in theory
• There are a lot of algorithms for processing natural language,

especially in practice
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A brief history of NLU#

1940-60s Foundational Insights
automaton, McCulloch-Pitts neuron
probabilistic or information-theoretic models
formal language theory (Chomsky, 1956)

1957–70 The Two Camps
symbolic and stochastic (parsing algorithms)
Bayesian method (text recognition)
the first online corpora (Brown corpus of English)

1970–83 Four Paradigms
stochastic paradigm: Hidden Markov Model
logic-based paradigm: Prolog (Definite Clause Grammars)
natural language understanding: SHRDLU (Winograd, 1972)
discourse modeling paradigm: speech acts, BDI

1983–93 Empiricism and Finite State Models Redux
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A brief history of NLU

1994–99 The Field Comes Together
probabilistic and data-driven models

2000–07 The Rise of Machine Learning
big data (spoken and written)
statistical learning
Resurgence of probabilistic and decision-theoretic methods

2008– Deep learning
high-performance computing
NLP as recognition

2015– Pretrained language models
2017– Transformer
2020– Large language models (GPT3/ChatGPT/GPT4)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 11 5



Communication

A language is a structured system of communication used by humans
– spoken, written, and sign languages

Philosophy of language
• “Classical” view (pre-1953):
language consists of sentences that are true/false (cf. logic)
• “Modern” view (post-1953):
language is a form of action

Wittgenstein (1953), Philosophical Investigations
Austin (1962), How to Do Things with Words

Searle (1969), Speech Acts
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Speech acts

SITUATION

Speaker Utterance Hearer

Speech acts achieve the speaker’s goals:
Inform “There’s a pit in front of you”
Query “Can you see the gold?”
Command “Pick it up”
Promise “I’ll share the gold with you”
Acknowledge “OK”

Speech act planning requires knowledge of
– Situation
– Semantic and syntactic conventions
– Hearer’s goals, knowledge base, and rationality

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 11 7



Stages in communication (informing)

Intention S wants to inform H that P
Generation S selects words W to express P in context C
Synthesis S utters words W

Perception H perceives W ′ in context C ′

Analysis H infers possible meanings P1, . . . Pn

Disambiguation H infers intended meaning Pi

Incorporation H incorporates Pi into KB

How could this go wrong?
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Stages in communication (informing)

Intention S wants to inform H that P
Generation S selects words W to express P in context C
Synthesis S utters words W

Perception H perceives W ′ in context C ′

Analysis H infers possible meanings P1, . . . Pn

Disambiguation H infers intended meaning Pi

Incorporation H incorporates Pi into KB

How could this go wrong?
– Insincerity (S doesn’t believe P )
– Speech wreck ignition failure
– Ambiguous utterance
– Different understanding of current context (C 6= C ′)
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Knowledge in language

Engaging in complex language behavior requires various kinds of
knowledge of the language

• Linguistic knowledge
– Phonetics and phonology: the linguistic sounds
– Morphology: the meaningful components of words
– Syntax
– Semantics
– Pragmatics
– Discourse: the linguistic units larger than a single utterance

• World knowledge/model: common knowledge, commonsense
– language cannot be understood without the everyday knowledge

that all speakers share about the world
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Syntax

Vervet monkeys, antelopes etc. use isolated symbols for sentences
⇒ restricted set of communicable propositions, no generative capac-
ity

Chomsky (1957): Syntactic Structures

Grammar is a set of rules that defines the compositional (tree) struc-
ture of allowable phrases
A language is the set of sentences that follow those rules

e.g., speech (linear), text (linear), music (two-dimensional)

A formal language is a set of strings of terminal symbols
– impossible to formalize a natural language
– possible to study a natural language by a formal grammar

Each string in the language can be analyzed/generated by the (for-
mal) grammar
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Syntactic structures

The grammar is a set of rewrite rules (Chomsky normal form)
E.g.

S → NP VP

Article → the | a | an | . . .
Here S is the sentence symbol, NP and VP are nonterminals
– lexical rules
– syntactic rules
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Grammar types

Regular: nonterminal → terminal[nonterminal ]

S → aS
S → Λ

Context-free: nonterminal → anything

S → aSb

Context-sensitive: more nonterminals on right-hand side

ASB → AAaBB

Recursively enumerable: no constraints

• Related to Post systems and Kleene systems of rewrite rules and
can be used as computational models
• Natural languages are probably context-free, parsable in real-time
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Example: Wumpus lexicon
Noun → stench | breeze | glitter | nothing

| wumpus | pit | pits | gold | east | . . .
Verb → is | see | smell | shoot | feel | stinks

| go | grab | carry | kill | turn | . . .
Adjective → right | left | east | south | back | smelly | . . .
Adverb → here | there | nearby | ahead

| right | left | east | south | back | . . .
Pronoun → me | you | I | it | . . .

Name → John | Mary | Beijing | UCB | PKU | . . .
Article → the | a | an | . . .

Preposition → to | in | on | near | . . .
Conjunction → and | or | but | . . .

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Wumpus lexicon
Noun → stench | breeze | glitter | nothing

| wumpus | pit | pits | gold | east | . . .
Verb → is | see | smell | shoot | feel | stinks

| go | grab | carry | kill | turn | . . .
Adjective → right | left | east | south | back | smelly | . . .
Adverb → here | there | nearby | ahead

| right | left | east | south | back | . . .
Pronoun → me | you | I | it | S/HE | Y ′ALL . . .

Name → John | Mary | Boston | UCB | PAJC | . . .
Article → the | a | an | . . .

Preposition → to | in | on | near | . . .
Conjunction → and | or | but | . . .

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Example: Wumpus grammar
S → NP VP I + feel a breeze
| S Conjunction S I feel a breeze + and + I smell a wumpus

NP → Pronoun I
| Noun pits
| Article Noun the + wumpus
| Digit Digit 3 4
| NP PP the wumpus + to the east
| NP RelClause the wumpus + that is smelly

VP → Verb stinks
| VP NP feel + a breeze
| VP Adjective is + smelly
| VP PP turn + to the east
| VP Adverb go + ahead

PP → Preposition NP to + the east
RelClause → that VP that + is smelly
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Probabilistic grammar#

Probabilistic context-free grammar (PCFG): the grammar assigns a
probability to every string

VP → Verb[0.70]
| VP NP [0.03]

With probability 0.70 a verb phrase consists solely of a verb and
with probability 0.30 it is a V P followed by an NP

Also, assign a probability to every word (lexicon)

Problems
• Overgenerate: generate sentences that are not grammatical

e.g., “Me go I.”
• Undergenerate: reject correct sentences

e.g., “I think the wumpus is smelly.”
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Grammaticality judgements

Formal language L1 may differ from natural language L2

L1 L2

false 
positives

false 
negatives

Adjusting L1 to agree with L2 is a learning problem

* the gold grab the wumpus
* I smell the wumpus the gold

I give the wumpus the gold

Intersubjective agreement reliable, independent of semantics
Real grammars 10–500 pages, insufficient even for “proper” English
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Syntactic analysis

Exhibit the grammatical structure of a sentence

I shoot the wumpus
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Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun
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Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

NP VP NP
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Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

NP VP NP

VP
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Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

NP VP NP

VP

S
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Parsing

Bottom-up: replacing any substring that matches RHS of a rule with
the rule’s LHS

def BottomUpParse(words, grammar)

forest←words

loop do

if Length(forest) = 1 and Category(forest[1]) = Start(grammar) then

return forest[1]

else

i← choose from {1. . .Length(forest)}
rule← choose from Rules(grammar)

n←Length(Rule-RHS(rule))

subsequence←Subsequence(forest, i, i+n-1)

if Match(subsequence,Rule-RHS(rule)) then

forest[i. . . i+n-1]← [Make-Node(Rule-LHS(rule), subsequence)]

else failure

return a parse tree
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Chart parser#

E.g.
“Have the students in AI course take the exam.”

“Have the students in AI course taken the exam?”

Problem: Parsing won’t be able to tell if a word is correct until the
later word and will have to backtrack all the way to the first word

Chart parsers: to avoid the inefficiency of repeated parsing, every time
we analyze a substring, store the results in a data structure known as
a chart, so we won’t have to reanalyze it later
⇐ dynamic programming

CYK algorithm
– a Chart parser
– bottom-up PCFG
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Context-free parsing

Efficient algorithms (e.g., CYK algorithm) O(n2m) for context-free
(time, n – number of words, m – number of nonterminal symbols)

run at several thousand words/sentences for real grammar

Context-free parsing ≡ Boolean matrix multiplication

Can be improved by search, say A∗, beam search etc.
⇒ is it possible O(n)?
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Dependency grammars∗

Syntactic structure is formed by binary relations between lexical items,
without a need for syntactic constituents

(Left) dependency parsing (Right) phrase structure parsing

More suitable to data-oriented parsing by machine learning
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Augmented grammars∗

The nonterminals are not just atomic symbols but are structured
representations

E.g., “I”: NP (Sbj, 1S, Speaker)
“a noun phrase that is in the subjective case, first person singular,

and whose meaning is the speaker of the sentence”
“Me”: NP (Obj, 1S, Speaker)

Subcategory: a category has been augmented with features
E.g., Pronoun augmented with “subjective case, first person sin-

gular”

Head: a word is the most important in a phrase or a sentence
E.g., “banana” is the head of the “a banana”
“ate” is the head of the “ate a banana”

V P (v): a phrase with category V P whose headword is v
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Logical grammars

BNF notation for grammar too restrictive
– difficult to add “side conditions” (number agreement, etc.)
– difficult to connect syntax to semantics

Idea: express grammar rules in logic

X → YZ becomes Y (s1) ∧ Z(s2)⇒ X(Append(s1, s2))
X → word becomes X([“word”])
X → Y | Z becomes Y (s)⇒ X(s) Z(s)⇒ X(s)

Here, X(s) means that string s can be interpreted as an X
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Logical grammars

It’s easy to augment the rules

NP (s1) ∧ EatsBreakfast(Ref (s1)) ∧ V P (s2)

⇒ NP (Append(s1, [“who”], s2))

NP (s1) ∧ Number(s1, n) ∧ V P (s2) ∧Number(s2, n)

⇒ S(Append(s1, s2))

Parsing is reduced to logical inference
Ask(KB, S([“I” “am” “a” “wumpus”]))

Can add extra arguments to return the parse structure
– logical semantics
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Logical grammars

Generation simply requires a query with uninstantiated variables
Ask(KB, S(x))

If we add arguments to nonterminals to construct sentence semantics,
NLP generation can be done from a given logical sentence

Ask(KB, S(x,At(Robot, [1, 1]))
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Complications of natural language

Real human languages provide many problems for NLU/NLP

• ambiguity

• anaphora

• indexicality

• vagueness

• discourse structure

• metonymy

• metaphor

• noncompositionality etc.
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Ambiguity

Ambiguity at all levels
• Lexical
“You held your breath and the door for me”
• Syntactic
“Put the book in the box on the table”

[the book] in the box
[the book in the box]

• Semantic: sentence can have more than one meaning
“Alice wants a dog like Bob’s”
• Pragmatic
“Alice: Do you know who’s going to the party?
Bob: Who?”

Disambiguation: recovering the most probable intended meaning of
an utterance
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Example: ambiguity

Garden-path sentence (Bever 1970): a grammatically correct but
most likely interpreting the incorrect sentence

“The old man the boat.”
[The old are the persons who man the boat.]

Try this sentence
“The complex houses married and single soldiers and their fami-

lies.”

“研究鲁迅的文章”

[“我研究鲁迅的文章。”
“我研究鲁迅的文章发表不了。”]
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Example: ambiguity

Most view syntactic structure as an essential step towards meaning
e.g., “Mary hit John” 6= “John hit Mary”

Fish-and-Chip

“Wouldn’t the sentence ’I want to put a hyphen between the words
Fish and And and And and Chips in my Fish-And-Chips sign’ have
been clearer if quotation marks had been placed before Fish, and be-
tween Fish and and, and and and And, and And and and, and and and
And, and And and and, and and and Chips, as well as after Chips?”
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Example: ambiguity in speech

施施施氏氏氏食食食狮狮狮史史史 (赵元任)

“石室诗士施氏，嗜狮，誓食十狮。施氏时时适市视狮。

十时，适十狮适市。是时，适施氏适市。施氏视是十狮，恃

矢势，使是十狮逝世。氏拾是十狮尸，适石室。石室湿，氏

使侍拭石室。石室拭，施氏始试食是十狮尸。食时，始识是

十狮尸，实十石狮尸。试释是事。”
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ChatGPT: translating classical Chinese#

石室里的诗人施氏，痴迷于狮子，发誓要吃十只狮子。施氏

时常去市场观察狮子。十点钟时，他带着十只狮子去市场。

就在这时，他和十只狮子去了市场。施氏看到了这十只狮

子，依仗自己的力量，使这十只狮子死去。施氏拾起了这十

只狮子的尸体，回到了石室。石室很湿，施氏叫人把石室

擦干净。石室擦干后，施氏开始尝试吃这十只狮子的尸体。

在吃的时候，他才意识到这十只狮子的尸体实际上是十块石

头。他试图解释这件事。
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Semantics

Formal semantics
– logical grammars = logical semantics

Computatiolnal semantics
– Distributional semantics
foundation of deep learning for NLP
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Formal semantics

Montague grammar → formal semantics for English
R. Montague, English as a Formal Language, 1970
(Formal Philosophy, 1974)
I. Heim and A. Kratzer, Semantics in Generative Grammar, 1998
C. Potts, Logic of Conventional Implicatures, 2005
– Chomsky: Minimalist Program
– Discourse Representation Theory
– Situation Semantics/Situation Theory
– Game-theoretic Semantics
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Distributional semantics

Context is essential in the similarity of the words

Distributional hypothesis: the link between similarity in how
words are distributed and similarity in what they mean

– a word’s distribution is the set of contexts
– two words that occur in very similar distributions (that occur

together with very similar words) are likely to have the same meaning

Distributional semantics (vector semantics): instantiating the dis-
tributional hypothesis by automatically learning representations of
the meaning of words directly from their distributions in texts in
unsupervised ways
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Embeddings

Word embedding: the meaning of a word can be defined as a vector
(or a list of numbers, a point) in low dimensional space

– based in some way on counts of neighboring words
– embedding: assign the vectors for representing words in a vector

space

One-shot vector: the i-th word in the dictionary V with a 1 bit in the
i-th input position and a 0 in all the other positions

– can’t capture the similarity between words
Consider a vector of N neighboring word (N -gram, see later)

– with a 100, 000-word vocabulary, there are 1025 5-grams (al-
though vectors in this 1025-dimensional space would (sparse)
A word embedding: a low-dimensional vector representing a word
⇐ learning automatically from the data

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 11 41



Example: embeddings

Each vector doesn’t have “meanings”

“aardvark” = [−0.7,+0.2,−3.2, · · · ]
“abacus” = [+0.5,+0.9,−1.3, · · · ]
...

“zyzzyva” = [−0.1,+0.8,−0.4, · · · ]
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Example: embeddings

The vector (feature) space: similar words having similar vectors
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Example: embeddings

Word analogy problems: assume B−A = D−C
“Athens is to Greece as Oslo is to [what]?”

Contextualized word embeddings (by pretraining, see later) can be
used for downstream NLP tasks
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Word embeddings

Let V be a vocabulary. A mapping f from any w ∈ V to a real
vector f (w) = e ∈ R

D, i.e., V → R
D

– D is a hyperparameter of the dimension
– f is usually represented by a |V |×D matrix of free parameters

and shared across all the words in the context
– representing the distributed feature vectors associated with each

word in the vocabulary

Vector semantic models are extremely practical because they can be
learned automatically from text without any labeling or supervision
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Language models

By a language L we mean a natural language that is a set of se-
quences of discrete tokens, or any set of sequences of discrete things
that can be discretized and encoded as tokens

– e.g., the dialects (including internet slang), the ancient lan-
guages, the sign language, the lip language, the cortical activity, the
musical languages, the animal songs, mathematical (and scientific
expressions), the signals and the images (representing images by lan-
guage) and games, gesture and feeling (such as emotion) and even
cognitive behaviour (such as gaze)

– Artificial languages, such as programming languages, are for-
mal languages, but the source code of a programming language is a
special kind of language
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Vocabularies

Let V be the vocabulary of L that is a large but finite set
– wn ∈ V ∗ (finite strings of elements in V ) is a token, n ∈ N

– w = (w1, w2 · · · , wN) is a sequence (finite string of tokens),
where N is the length of sequence
Write L = {w | w is a sequence}, that is a finite set of sequences

A discourse D ⊂ L is a subset of L
– can be made as a single sequence by concatenating all the se-

quences in the discourse
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Tokenization

A token may be a character, a sub-word a word, or even a sequence
that is either a sentence or a text

– without loss of generality, usually mention the level of the tokens
as words and the sequences as sentences

Tokenization: the process of dividing a text into a sequence of token

Token IDs: A piece of text is represented as a sequence of indices,
corresponding to its (sub)words, preceded by bos token and followed
by eos token
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Corpora

A corpus is a body of text

Considered a corpus of sequences (sentences) of tokens that is a large
but finite set

W = {w(1),w(2), . . . ,w(M)}
– w(m) =

(

wm1, wm2 · · · , wmN

)

∈ V ∗ is a (finite) sequence of
tokens wn ∈ V

– independent and identically distributed (iid) data, i.e. sampled
iid from some distribution P over V ∗

– used as the training set in machine learning

Wordnet: dictionary of about 100,000 words and phrases
– parts of speech, semantic relations (synonym, antonym)

Penn Treebank: parse trees for a 3-million-word corpus (English)
The British National Corpus: 100 million words
Web: trillion words (say, Wikipedia)
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Statistical language models

(Statistical) language model (LM): modeling a natural language as a
probability distribution over sentences and possible meaning

– assign probabilities to sequences of tokens

P (w) = P (w1:N)

= P (w1)P (w2 | w1)P (w3 | w1:2) · · ·P (wn | w1:N−1)

=

N
∏

n=1

P (wn | w<n)

=

N
∑

n=1

logP (wn | w<n)

– the sub-sequence wi≤n≤j = wi:j = (wi, wi+1 · · · , wj−1, wj) is the
context of the neighboring tokens or grammatical environments
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Statistical language models

• The chain rule (factorization) that indicates the link between the
joint probability of a sequence and the conditional probability of a
token given previous tokens
• P (wk | w<k) predicts (generates) the next word given previous
words — forward LM
• Similarly, — backward LM

P (w) = P (w1:N) =

N
∑

n=1

logP (wn | w>n) (1)

Bi-directional LM = Forward LM + Backward LM

⇐ generative and autoregressive models
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N-gram model

N -gram (letters or units) model P (c1:N): probability distribution of
n-letter (or word) sequences, defined as Markov chain of order n− 1
Say, a trigram (3-gram) model

P (ci|c1:i−1) = P (ci|ci−2:i−1)

In a language with 100 characters, the distribution has a million
entries, and can be accurately estimated by counting character se-
quences in a corpus with 10 million characters
With a vocabulary of 105 words, there are 1015 trigram probabilities
to estimate

e.g., books.google.com/ngram

Skip-gram model: counting words that are near each other, but skip
N words between them
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Neural language models

Neural LMs (NLM) implement LMs by neural networks (NNs) that
learn to predict the next word from prior words

P (w1:N) =

N
∑

n=1

logP (wn | w<n; fθ)

• The conditional probabilities are computed by an NN, which is a
function f with parameters θ, written as fθ
• fθ may be implemented by any deep NN, such as FFN (MLP),
RNN etc.

– FFN: a window of N words with many parameters O(N) (N -
gram O(vN)), difficult due to the context, relearning the same word
at different positions (parameter)

RNN LM: RNNs-based LM is suitable, one word at a time with a
parameter O(1), the parameter is the same for every word positions
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Neural language models

Write fθ(ht) = fθ(ht, wt,vt) to indicate the t-th hidden layer of fθ
with the deepness T (t ∈ N)

– (ht−1(w1), · · · , ht−1(wt−1)) are the input token vectors from
the previous layer

– vt = ht(wt) is the output vector
— at every time-step, updating the internal hidden state ht−2,

which summarizes (w1, · · · , wt−2), with a new token wt−1, resulting
in ht−1

— the resulting hidden state ht−1 is used to compute P (wt |
w1, · · · , wt−1)

— the output of fθ is a vector whose the t-th element vt estimates
the probability P (wt = t | w<t)

The initial h0 at the start is generally an arbitrary constant vector.
The readout function is generally a softmax layer
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Pretrained language models

Pretrained LMs (PLMs): given an unsupervised corpus

W = {w(1),w(2), . . . ,w(M)}
Use a standard objective to maximize the (log) likelihood

L(W ) =
1

M

∑

m

logP
(

w(m) | w(m−1), · · · ,w(m−c+1); gθ

)

– c is the size of the context in which it occurs
– PLM can be pretrained from scratch (raw texts) in self-supervised
learning
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Pretrain: self-supervised learning

Self-supervised learning is the unsupervised learning by unlabelled
data in a supervised learning manner

that predicts only a subset of information using the rest
– it usually doesn’t care about the final performance of the task,

rather learns intermediate representation with the expectation that
the representation can carry good semantic or structural meanings
and can be beneficial to a variety of downstream tasks

PLMs that are language “understanding” can be applied for down-
stream NLP tasks by finetuning
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Pretraining: self-supervised learning

Pretraining algorithm
1. Initialization: Initialize LM parameters either randomly or with
pre-trained weights
2. Training loop:

2.1 Iterate over the training data for a certain number of epochs
2.2 Divide the corpus into batches and tokenize the input text
2.3 Forward pass: Pass the tokenized input through the neural

network layers to compute logits
2.4 Calculate the loss between predicted logits and actual targets
2.5 Backward pass: Compute gradients of the loss concerning

model parameters
2.6 Update parameters using gradient descent

3. Evaluation (optional): Optionally, evaluate the model on a vali-
dation set to monitor performance
4. Return: trained LM after the specified number of epochs
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Finetuning: supervised learning

Finetuning: adjusting the parameters of a pretrained LM on a specific
dataset or task to improve its performance ⇒ transfer learning

– the knowledge gained from pre-training on a large corpus is
leveraged to adapt the model to a more specific task

Finetuning algorithm
1. Select a target dataset/task: a specific task
2. Adapt the model architecture: modify the LM architecture if nec-
essary to suit the target task
3. Initialize from pretrained weights: initialize the parameters of the
model using the pretrained weights
4. Train on target task data: finetune the model on the target
dataset by updating its parameters through BP by a loss function
5. Monitor performance: on a validation set
6. Iterate: finetune the model iteratively until satisfactory perfor-
mance is achieved on the target task
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Prompting: in-context learning

In-context learning: dynamically adapt and personalize models based
on specific user interactions or contexts

Prompting: providing specific instructions or cues to guide the gen-
eration of text

– a way to steer the model’s output toward a desired direction

Both finetuning and prompting are used to adapt PLMs to specific
tasks, but they differ in their approach and purpose

– Approach: finetuning involves updating/modifying the parame-
ters of a PLM using supervised learning; prompting does not involve
updating the model’s parameters but instead influences the output

– Purpose: fine-tuning is to adapt the PLM to perform well on a
specific task; prompting is to control and influence the generation of
text from a PLM
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Masked language model∗

MLM are trained by masking (hiding) individual words in the input
and asking the model to predict the masked word

– considered to enhance the similarity of the distributed feature
vectors from the mask information

P (w1:N) =

N
∑

n=1

logP
(

wn | w̃; fθ(
←→
h t)
)

– fθ(
←→
h t): the NN for bidirectional LM – w̃ is the partially masked

version of the initial input w – a mask sequence is the sub-sequence
wi:j/a:b = (wi, wi+1, · · · , w̃a, w̃a+1, · · · , w̃b−1, w̃b, · · · , wj−1, wj)
which masks the tokens wa, wa+1, · · · , wb−1, wb in wi:j

where w̃ks are the mask sign depicted as blank (or some special
symbol)
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Pretrained word embeddings

Embedding (representation): representing knowledge (say words) into
low-dimensional (continuous) vector spaces

Pretrained word embeddings: word embeddings are pretrained in a
self-supervised way over a large corpus of text

Contextualized word embeddings: a model is pretrained to generate
contextual representations of each word in a sentence, instead of just
learning a word-to-embedding table

– mapping both a word and the surrounding context of words into
a word embedding vector
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Neural language systems

Neural language systems: neural models (deep learning) for NLP

• Encoder-decoder framework

• Transformer model
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Encoder-decoder framework

Encoder-decoder (E-D) consists of, considering RNN
– an encoder (reader, input) RNN processes the input sequence

x
– A decoder (writer, output) RNN is conditioned on that

fixed-length vector to generate the output sequence y
The last state of the encoder RNN is used as a representation (con-
text) c of the input sequence that is provided as input to the decoder
RNN
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Sequence-sequence models

Sequence-sequence (seq-seq) models are the E-Ds that are trained
jointly to maximize the average of the likelihood over all the pairs of
x and y sequences in the training set

– maybe text-text (discourse-discourse, document-document)
– is a natural choice of the E-Ds, i.e., using the same model,

objective, training procedure and decoding process for every NLP
task

E.g., machine translation (MT) is to translate a sentence from a
source language to a target language

Usually, the decoder in E-Ds generates a sequence by greedy decoding,
such as beam search
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Sequence-sequence formulations

Input sequence: x = {x1, x2, · · · , xT}
Output sequence: y = {y1, y2, · · · , yT ′}

Encoder: ht = f (xt, ht−1)
– ht is hidden state of input when f is a nonlinear activation

function
Context: c = q({h1, h2, · · · , hT})
– a vector connecting encoder-decoder
Decoder: st = f ′(st−1, yt−1, c)
st is hidden state of output

P (yt|yt−1, · · · , y1, c) = g(yt−1, st, c)

P (y) =
T ′
∏

t=1
P (yt|yt−1, · · · , y2, y1, c)
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Transformer model

The bottleneck problem of the E-D connector
– encoding: capturing all information about the source sentence
– performance of E-D deteriorates rapidly as the length of an input

sentence increases

Attention mechanism: maintains the RNN encoder, for each step j
during decoding, computes an attention score αji for hidden repre-

sentation hin
i of each input token to obtain a context vector
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Attention mechanism

Decoder
eji = a(hin

i ,h
out
j )

αji =
exp(eji)
T
∑

i=1
exp(eji)

cj =
T
∑

i

αjih
in
i

Alignment function a: measures similarity between two tokens
yj = fy(h

out
j ,yj−1, cj)

hout
j+1 = fn(h

out
j ,yj−1)

fy,fh: output layer and hidden layer in RNN

a can be implemented by an FFN, besides RNNs, e.g., a single-layer
neural network
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Self-attention

External attention: the basic attention acore ei = a(u,vi) is com-
puted by matching an external pattern u with each element vi, and
each score ei indicates quality of match

Idea: self-attention (internal attention) is to replace u by (internal)
parts of the sequence itself

– modeling long-distance context without a sequential dependency

E.g., “The math match is in progress between classes”, match is the
sentence head on which all other tokens depend (subcatogorization)
Self-attention captures the intrinsic dependency
⇒ Transformer
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Transformer

Transformers: stacked self-attention and point-wise fully connected
layers for both the encoder and decoder

• eschewing recurrence (RNNs) instead relying entirely on an atten-
tion mechanism to draw global dependencies between input and
output

– The attention matrix is directly formed by the dot product
of the input vectors

• both encoder and decoder are parallel

• No long connections: O(1) for all tokens
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Transformer

Best practice for the LMs, say contextualized word embeddings, not
only neural MT task

E.g., word sense disambiguation
“I arrived at the bank after crossing the street.”

“I arrived at the bank after crossing the river.”

to learn contextual word embeddings that can capture semantic in-
formation from their surrounding contexts
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Transformer operations

Problem: dot product between a vector and itself will always be high,
so each hidden state will be biased towards attending to itself
Solution: first projecting the input into three different representations
QKV, using three different weight matrices WQWKWV

• Query vector qi = Wqxi: attended from, like the target in the
attention mechanism

• Key vector ki = Wkxi: attended to, like the source

• Value vector vi = Wvxi: the context that is being generated

Note: In the attention mechanism, the key and value networks are
identical

but separate representations make sense and are flexible
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Transformer formulations

rij = (qi · kj) /
√
d

aij = erij/

(

∑

k

erik

)

ci =
∑

j

aij · vj

d: the dimension of k, q;
√
d is scale factor (numerical stability)

i, j: indexes
rij is different from rji (asymmetric)
• The choice of ci to use is learned from training examples
• In each transformer layer, self-attention uses the hidden vectors
from the previous layer
• Input is initially the embedding layer
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Transformer formulations

Encoding for all words in a sentence can be calculated simultaneously,
using matrix operations

can be computed efficiently in parallel on GPU

A = Softmax(
(XWQ)(XWK)⊤√

dout
),

c = A⊤(XWV )

Write as Attention(Q,K,V)
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Transformer formulations#

attn(ht, hs) = Attention(Q,K,V)

= softmax(
QK⊤√
dout

)V

= softmax(
(XWQ)(XWK)⊤√

dout
)(XWV ),

– WQ, WK, WV ∈ R
din×dout ( din,dout are the input dimension and

the output dimension) are matrices to be learned for transforming X
to its Q, K, V representations
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Cross attention

For seq-seq, the attention is applied to each token of the primary token
sequence X treating the second token sequence Z as the context

Define the Softmax function for matrix arguments and a Mask matrix

Softmax(A) [tz, tx] :=
expA [tz, tx]
∑

t expA [t, tz]

Mask [tz, tx] =

{

1 for bidirectional attention
[[tz ≤ tx] for unidirectional attention

Self-attention can be viewed as a special cross-attention
–Bidirectional unmasked self-attention: attend to each token,

treating all tokens in the sequence as the context (Mask≡1)
–Unidirectional masked self-attention: attend to each token,

treating all preceding tokens (including itself) as the context (au-
toregressive). Future tokens are masked out (Z = X)
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Multihead attention

The context-based summarization c is a sum over all previous posi-
tions in the sentence

– sometimes important information gets lost because it is essen-
tially averaged out over the whole sentence

Multihead attention: dividing the sentence up into m equal pieces
and apply the attention model to each of the m pieces

– Each piece has its own set of weights
The results are concatenated together to form c
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Transformer layers

Each transformer layer consists of several sub-layers
– self-attention layer
– feedforward layers, where the same FFN weight matrices are

applied independently at each position
– – a nonlinear activation function (ReLU) is applied after the

first feedforward layer for better representation
– residual connections (resolving vanishing gradient)

Typically, transformer models have six or more layers
– the output of layer i is used as the input to layer i + 1
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Transformer layers
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Positional embedding

Positional embedding: if the sequence has a maximum length of lmax,
we learn lmax new embedding vectors for each word position, capture
the ordering of the words

– self-attention is agnostic to word order (permutation invariant)
– the input to the first transformer layer is the sum of the word

embedding at position plus the positional embedding corresponding
to position
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The architecture of transformer

Reading: Vaswani, A et al. Attention is all you need, arXiv, 2017
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Transformer formulations#

Transformer networks (TRMs) are the E-D that stack the self-
attention and (element-wise fully connected) FFN layers for both the
encoder and decoder

Encoder : ht = ffn(attn(ht−1, ht(xt)))

cs = attn(ht, gs−1))

Decoder : gs = ffn(attn(attn(gs−1, gs(ys)), cs))

– ht(xt), gs(ys): the attentive position of the hidden layer
– attn((·), cs): encoder-decoder (cross) attention that is the E-D
connector by the attention mechanism

– – similar to self-attention, except it creates its queries matrix
from the layer below it, and takes the keys and values matrix from
the output of the encoder
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Transformer algorithms#

def Transformer(w | θ) // Encoder-decoder transformer forward pass

Input w ∈ V ∗, a sequence of token IDs

Parameters θ: We, ,Wp,WQKV ,β,γ,Wu

Hyperparameters lmax ,H // See below

// — Encoder —

for length(w) do

we←TokenEmbedding(w,We)

wp←PositionalEmbedding(l,Wp)

X←we+wp // Input embedding

for length of the encoder do

X←X+MultiheadAttention(X,X) //self-attention (Mask ≡ 1)

for length(X) do X←Norm(c)

X←FeedForward(X)

for length(X) do X←Norm(X) // send to the decoder
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Transformer algorithms#

// — Decoder —

Z←Y.Left

for length(Z) do

we←TokenEmbedding(Z,We)

wp←PositionalEmbedding(l,Wp)

Z←we+wp

for length of the decoder do

Z←Z+MultiheadAttention(Z,Z)

// self-attention with parameter sharing (Mask [[tz ≤ tx])

for length(Z) do Z←Norm(Z)

Z←MultiheadAttention(Z,X)

// cross-attention, Z is query sequence (Mask ≡ 1)

for length(Z) do Z←Norm(Z)

Z←FeedForward(Z)

for length(Z) do

Y←Unembedding(Linear(Norm(Z)))

return Y // Output probabilities
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Transformer algorithms#

def TokenEmbedding(w |We)

Input wi ∈ V , a token ID

Parameters We ∈ R
D×|V |, the token embedding matrix

return we = We [:,wi ]

// output we ∈ R
D , the vector representation of the token

def PositionalEmbedding(l |Wp)

Input l ∈ [lmax ], position of a token in the sequence

Output wp ∈ R
D

Parameters Wp ∈ R
D×lmax , the positional embedding matrix

return wp = Wp[:, l ]

// output wp ∈ R
D , the positional embedding matrix
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Transformer algorithms#

def Attention(X,Z |WQKV , Mask)

// Computes a single (masked) self- or cross- attention head

Input X ∈ R
dx× lx ,Z ∈ R

dz× lz

vector representation of the current and context sequences

Parameters WQKV : WQ ∈ R
dattn×dx ,WK ∈ R

dattn×dz , WV ∈ R
dout×dz

the query, key and value linear projections

Hyperparamter Mask ∈ {0, 1}lz×lx
A← Softmax((XWQ )(ZWK )⊤√

dattn
)

if ¬Mask[tx , tz ] then A[tx , tz ]←−∞
return c = A⊤(ZWV )

// output c ∈ R
dout×dlx ,updated representations of tokens in X

in the context of tokens in Z
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Transformer algorithms#

def MultiheadAttention(X,Z |Wh
QKV , Mask ,H )

// Computes a multihead (masked) self- or cross- attention head

Input X ∈ R
dx× lx ,Z ∈ R

dz× lz

Parameters Wh
QKV : for each h ∈ [H ]

Wh
Q ∈ R

dattn×dx ,Wh
K ∈ R

dattn×dz , Wh
V ∈ R

dmid×dz

Wo ∈ R
dout×Hdmid

Hyperparamters Mask ∈ {0, 1}lz×lx
H, number of attention heads

for each h ∈ [H ] do

ch←Attention(X,Z |Wh
QKV ,Mask)

c̄← [c1 , · · · , cH ] // concatenation

return c = Woc̄

// output c ∈ R
dout×dlx
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Transformer algorithms#

def Norm(X | β,γ,Wu)

// Normalizes layer activations X

Input X ∈ R
dx , NN activations

Parameters β,γ ∈ R
dx , element-wise scale and offset

m←
∑dx

i=1X[i] / dx
n←

∑dx
i=1(X[i]−m)2 / dx

return X = X−m√
n
⊙ γ + β

// output X ∈ R
dx , normalized activations

def Unembedding(c |Wu)

Input Z ∈ R
dx , a token encoding

Parameters Wu ∈ R
|V |×dx , the unembedding matrix

return Y = Softmax(WuZ)

// output Y ∈ P (V ), a probability distribution over the vocabulary
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Transformer training algorithms#

def TransformerTraining(d, θ)

// Training a seq-seq model

Input d = {(xn,yn)}Nn=1, a dataset of pairwise sequence

θ, initial transformer parameters

Hyperparamter Epochs ∈ N, η ∈ (0,∞)

for i = 1, 2, · · · ,Epochs do
for n = 1, 2, · · · , N do

l← length(xn)

P(θ)←Transformer(xn,yn | θ)
loss(θ)←−

∑l−1
t=1 log P(θ) [xn[t + 1], t]

θ← θ − η · ∇ loss(θ)

return θ̂=θ

// θ̂, the trained parameters
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Transformer inference algorithms#

def TransformerInference(x, θ̂)

// Using a trained seq-seq model for prediction

Input A transformer with trained parameters θ

x, an input sequence

Hyperparamter τ ∈ (0,∞)

y← [bos token]

y← 0

while s 6= eos token do

P←Transformer(x,y | θ)
P←P[:, length(x )]

sample a token y from q ∝ P 1 / τ

y← [y, y ]

return y
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Variants of Transformer#

Decoder-only Transformer: a variant of the Transformer architecture
that consists only of the decoder, without the encoder

where only generation or autoregressive prediction is required, us-
ing a decoder-only Transformer can be more efficient

there is no need for an encoder to process the input sequence

Encoder-only Transformer: only the encoder, excluding the decoder
where bidirectional context is sufficient or where only encoding is

required (e.g. text classification etc.)

There are a lot of variants of Transformer
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Examples: BERT and GPT+

Hints
• BERT is bi-directional LM and the encoder-only for language

understanding; GPT (successors GPT2/GPT3/GPT4) is unidirec-
tional LM and the decoder-only for language generation
• There are many variants and applications of BERT and GPT
• There are a lot of PLMs other than BERT/GPT

Readings: Devlin J et al., Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv, 2018

Brown T et al. Language models are few-shot learners, arXiv,
2020 (GPT3)
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Example: AlphaCode∗

Programming is a general-purpose problem-solving tool
Say, answering university-level math problems

AlphaCode: a system for code generation, top 54.3% in programming
competitions on the Codeforces w/ >5,000 participants

- Pretrain an E-D transformer-based LM on GitHub code
- Finetune the model on the dataset of competitive data
- Generate a large number of samples from the models for each

problem; filter the samples to obtain a small set of submissions

Readings: Li Y et al., Competition-Level Code Generation with Al-
phaCode, DeepMind, 2022

Drori I et al., A Neural Network Solves and Generates Mathemat-
ics Problems by Program Synthesis: Calculus, Differential Equations,
Linear Algebra, and More, PNAS, 2022
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Large language models

LLMs are the PLMs trained on vast amounts of data, characterized
by their large size in terms of parameters

– Scale: billions or even trillions of data
– Size: a large number of parameters, from billions or even more
– Architectures: mostly Transformers

Multi-modal LLM (MM-LLM): a type of LM/LLM that incorporates
information from multiple modalities, such as text, images, audio, or
video, into its training and inference processes

– Integration of multi-modalities, cross-modal understanding
– Training Data: paired examples consisting of text along with

accompanying images, audio, or video, as well as unimodal data for
each modality

– Architecture: Transformers are commonly adapted and extended
to handle multi-modal inputs
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Scaling laws#

Scaling laws in LLMs refers to the relationship between model size,
dataset size, computational resources, and performance

– Larger models have been shown to achieve better performance
on various NLP tasks

Compute-resource scaling laws suggests that as the model size in-
creases, so does the amount of computational resources needed to
train and deploy the model effectively

– Performance improvement comes at the cost of increased com-
putational resources

— Larger models require more memory, longer training times, and
greater computational power for training and inference.
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Emergent abilities

Emergent abilities of LLMs are the abilities that are not present in
small models but arise in large models

– In-context learning introduced by 175B GPT-3: provided with
a natural language instruction and/or several task demonstrations, it
can generate the expected output for the test instances by completing
the word sequence of input text, without requiring additional training
or gradient update

– Instruction following: finetuning with a mixture of multi-task
datasets formatted via natural language descriptions (instruction tun-
ing), LLMs perform well on unseen tasks that are also described in
the form of instructions

– Step-by-step reasoning: LLMs can solve complex tasks by uti-
lizing the prompting mechanism that involves intermediate reasoning
steps for deriving the final answer
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Emergent abilities

By analogy, such an emergent pattern has close connections with the
phenomenon of phase transition in physics

Do the emergent abilities of LLMs mean some kind of machine intelligence??
– differing from human one?

Ability eliciting: design suitable task instructions or specific in-context
learning strategies to elicit the abilities
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Example: Prompting engineer#

Prompting engineer refers to a role or skill set of designing effective
prompts for LLMs

Designing prompts, controlling model behavior, evaluating prompt
effectiveness, domain expertise, ethical considerations, etc.

E.g., designing prompts that prompt the chatbot to ask clarifying
questions, and provide relevant information for a call center
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Human alignment

Alignment tuning: making LLMs act in line with human expectations
(e.g., helpful, honest, and harmless)

– Pretraining lacks the consideration of human values or prefer-
ences

– LLMs exhibit unintended behaviors

Reinforcement learning from human feedback (RLHF) proposed to
finetune LLMs with the collected human feedback data
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RLHF algorithm#

RLHF algorithm
1. Initialization: the model
2. Interaction with the environment: taking actions based on cur-
rent policy
3. Human feedback: human feedback is collected to evaluate the
quality of the actions
4. Updating the policy: using the collected human feedback to up-
date the policy
5. Iterative learning: continuing to interact and collect human feed-
back and update policy iteratively
6. Convergence: to converge to a policy that maximizes the cumu-
lative reward or satisfies the user’s preferences based on the human
feedback provided
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Hallucination#

Hallucination means that the generated information is either in con-
flict with the existing source (intrinsic hallucination) or cannot be
verified by the available source (extrinsic hallucination)

Partially alleviated approaches
– alignment tuning
– tool utilization: the integration of external tools for the provision

of credible information sources
– uncertainty estimation of LLMs to identify hallucinations
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Multi-modal LLMs#

Multi-modal integration in LLMs
- Early fusion: the input data from different modalities are com-

bined at the input layer of the LLM
– a single, unified representation for all modalities, preserving

the relationships between modalities, but may suffer from modality
mismatches

- Late fusion: processing each modality separately through dedi-
cated branches of the LLM and then merging the representations at
a higher-level layer

– capturing modality-specific features before combining
them, potentially reducing modality mismatches

- Cross-modal attention: enabling the LLM to dynamically attend
to relevant information from different modalities, facilitating effective
integration of multi-modal information
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Multi-modal LLMs

Benefits of MM-LLM
- Richer understanding: richer semantics and contextual cues,

e.g., combining text with images enables the model to understand
concepts that are difficult to express in words alone

- Improved performance: complementary information from dif-
ferent modalities, e.g., combining textual and visual information in
image captioning tasks often results in more descriptive and accurate
captions

- Enhanced user experience: more natural and intuitive interac-
tions

E.g., GPT-4V, Gemini 1.5
from millions of tokens of context, including multiple long docu-

ments and hours of video and audio
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Examples: Multi-modal LLMs#

Visual Question Answering (VQA): LLMs answer questions about im-
ages by combining visual and textual information

Image Captioning: LLMs generate descriptive captions for images
based on their visual content

Speech Emotion Recognition: LLMs analyze audio signals to detect
and classify the emotional states of speakers

Multi-modal Chatbots: LLMs engage in natural conversations using
text, images, and audio inputs
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Applications of LLMs#

• Healthcare

• Education

• Law

• Finance

• Scientific research (AI4Science)

Most likely, LLMs can be used as a foundation model for NLP

• NLP tasks
as downstream tasks of LLMs
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Natural language processing

NLP encompasses a wide range of tasks, each addressing different
aspects of language understanding and generation

• Machine Translation (MT): Translating text from one language to
another while preserving its meaning and context
• Speech Recognition: Transcribing spoken language into text
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NLP tasks#

• Text Classification: Classifying text into predefined categories or
labels based on its content

- applications: sentiment analysis, topic classification, spam de-
tection
• Named Entity Recognition (NER): Identifying and classifying
named entities (e.g., persons, organizations) mentioned in the text

- information extraction, entity linking
• Part-of-Speech Tagging (POS): Assigning grammatical categories
(e.g., noun, verb) to each word in a sentence

- many downstream NLP tasks
• Dependency Parsing: Analyzing the grammatical structure of a
sentence to identify the relationships between words

- syntactic analysis, information extraction
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NLP tasks

• Text Summarization: Generating concise and coherent summaries
of longer text documents

-extract or abstract information
• Question Answering (QA): Answering questions posed in natural
language based on a given context or knowledge base

- information retrieval, reading comprehension
• Sentiment Analysis: Analyzing the sentiment or opinion expressed
in the text to determine whether it is positive, negative, or neutral

- social media monitoring, customer feedback analysis, market
research
• Text Generation: Generating coherent and contextually relevant
text based on a given prompt or input

-language modeling, dialogue generation, content creation
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NLP tasks

• Named Entity Linking (NEL): Linking named entities mentioned
in the text to entries in a knowledge base or reference database
• Language Understanding: Understanding the meaning and in-

tent behind natural language utterances
- intent classification, slot filling, dialogue state tracking

• Text Clustering and Similarity: Grouping similar documents or text
passages into clusters based on their content or similarity

- information retrieval, document organization, recommendation
systems
• Textual Entailment Recognition: Determining whether one text
(the premise) logically entails another text (the hypothesis)

- question answering, information retrieval, inference
• Text Alignment and Paraphrasing: Aligning and comparing text
passages to identify similarities, differences, or paraphrases

- plagiarism detection, duplicate detection, text simplification
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Machine translation

MT: automatic translation of text from one natural language (the
source) to another (the target)

Try to translate a passage of a page in a browser by Google translator
or ChatGPT in the source Chinese into the target English, and then
translate back from English to Chinese

What can you find??

A translator (human or machine) requires an in-depth understanding
of the bilingual text

A representation language that makes all the distinctions necessary
for a set of languages is called an interlingua

– creating a complete knowledge representation of everything
– parsing into that representation
– generating sentences from that representation
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Neural machine translation

NMT (Neural MT): end-to-end (deep) learning approach for MT
– regard MT as a sequence-sequence prediction task and, without

using any information from conventional MT systems
– design two deep neural networks ⇒ viewing MT as recognition
– – an encoder: to learn continuous representations of source

language sentences
– – a decoder: to generate the target language sentence with

source sentence representation

Currently, NMT is the best MT system over rule-based or statistical
MT systems
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Transformer for machine translation

The best practice NMLs are based transformer: input source x, out-
put target y

ht = Transformer encoder(ht−1, ht(xt))

gs = Transformer decoder(gs−1, gs(ys))

Decoding: once training is complete, give a source sentence, generate
the corresponding target sentence

one word at a time, and then feedback in the word generated the
next timestep
• Greedy decoding: selecting the highest probability word
– may not maximize the probability of the entire target sequence
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Decoding

Beam search: optimal decoding
– keeping the top k hypotheses at each stage, extending each by

one word using the top k choices of words, then choosing the best k
of the resulting k2 new hypotheses

– when all hypotheses in the beam generate the special 〈end〉
token, the algorithm outputs the highest scoring hypothesis

Beam size b = 2
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Machine translation as a downstream task of LLM

Downstream tasks of LLMs involve finetuning pretrained LLMs on
specific tasks or domains

Early integration of LLMs in MT tasks, such as pretraining on parallel
corpora and finetuning on translation objectives

LLMs revolutionized MT with their ability to capture context, se-
mantics, and stylistic nuances, leading to more fluent and natural
translations

E.g., Google’s NMT system and OpenAI’s GPT-based MT

Adaptability to diverse language pairs and domains
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Speech recognition∗

Speech recognition: identify a sequence of words uttered by a speaker,
given the acoustic signal
It’s not easy to wreck a nice beach (recognize speech)
Speech signals are noisy, variable, ambiguous

Use Bayes’ rule

P (Words|signal) = αP (signal|Words)P (Words)

I.e., decomposes into acoustic model + (statistical) language model
Words are the hidden state sequence, signal is the observation
sequence

Automatic speech recognition (ASR): pretrained encoder and decoder
End-to-end speech to text translation (ST) and text-to-speech (TTS):
pretrained MT
Speech-speech translation: sequence-sequence model
⇐ pretrained transformer ⇒ downstream tasks of LLMs
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Phones∗

All human speech is composed from 40-50 phones, determined by the
configuration of articulators (lips, teeth, tongue, vocal cords, air flow)

Form an intermediate level of hidden states between words and signal
⇒ acoustic model = pronunciation model + phone model

ARPAbet designed for American English

[iy] beat [b] bet [p] pet
[ih] bit [ch] Chet [r] rat
[ey] bet [d] debt [s] set
[ao] bought [hh] hat [th] thick
[ow] boat [hv] high [dh] that
[er] Bert [l] let [w] wet
[ix] roses [ng] sing [en] button
... ... ... ... ... ...
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Speech sounds#

Raw signal is the microphone displacement as a function of time;
processed into overlapping 30ms frames, each described by features

Analog acoustic signal:

Sampled, quantized 
digital signal:

Frames with features:

10  15  38

52  47  82

22  63  24

89  94  11

10  12  73

Frame features are typically formants—peaks in the power spectrum
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Audio-language models

ALMs: designed to understand and generate language from spoken
audio signals and bridge the gap between audio and text

- Audio processing: transcribe and analyze spoken language from
audio recordings

- Audio-language pretraining (ALP)
- learn to associate audio with textual descriptions in a shared

latent space
- training objectives capturing semantic alignment between audio

and textual modalities
- training on speech-text pairs using self-supervised learning

⇒ MM-LLMs
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TTS: Text-to-speech

Consider a dataset D = {xi,yi}Ni=0

- y: an audio sample
- x = {x1, · · · , xT}: the corresponding text transcription

The audio y = {y1, · · · , yS} is represented by a sequence of S dis-
crete tokens

– a separately trained speech tokenizer

Transformer-based autoregressive model with parameters φ to learn
the joint probability of the text and audio sequences (i.e. LLM-based)

p(y,x) = p(y | x)p(x) =
S
∏

s=1

p (ys | y<s,x;φ)
T
∏

t=1

p (xt | x<t;φ) .

The predicted speech tokens are concatenated with speaker embed-
dings and decoded into waveforms

– a separately trained decoder consisting of linear and CNN layers
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TTS: Text-to-speech

Emergent abilities: say BASE TTS (2024), built with 10K+ hours
and 500M+ parameters begin to demonstrate natural prosody on
textually complex sentences
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LLM-based ASR∗

Massively multilingual ASR refers to the capability of a single system
to transcribe speech into text across a wide range of languages

LLMs have emerged as a promising approach for massively multilin-
gual ASR

y = LLM (I, (x1, y1) , (x2, y2) , . . . , (xk, yk) , x)

where x represents the ASR transcription result, and y is the cor-
rect transcription. The pairs (xi, yi)

k
i=1 are the k examples given to

the LLM, and I is the instruction provided to the LLM (in-context
learning)
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LLM-based ASR∗

1. Data collection and preprocessing
- Preprocessed to extract acoustic features

2. Training LLMs for ASR
- LLMs are trained or finetuned to map acoustic features to cor-

responding textual transcripts in multiple languages
3. Language modeling and adaptation

- Capture the linguistic characteristics of diverse languages
- LMs may be shared across languages, leveraging the common-

alities between languages to improve performance on low-resource
languages
4. Handling multilingual input

- During inference, the LLM processes incoming speech signals
from multiple languages simultaneously

- The LLM’s language identification module identifies the lan-
guage(s) spoken in the input signal
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Conversation AI+

Conversation AI, Artificial Conversation Intelligence (ACI) (conver-
sation systems, conversation agents, dialogue systems, (chat)bots):
converse with humans via natural language ⇐ Turing test

– the first kind of NLP, the crown pearl of AI Types of ACI

• QA: single turn conversation

• Task-oriented agents: short conversations to get information from
the user for a particular task
E.g., intelligent assistants, such as intelligent personal assistants
(IPAs), on every cellphone or on home controllers (Siri, Cortana,
Alexa, Google Home etc.).

• Chatbots: long (unstructured) conversations like human-human
interaction (open-ended non-task-oriented, open domain)

• Companionable agents: conversations with users day by day by
building long-term relationships with them
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Dialogue

A dialogue contains the following phases
1. Input recognizer: converting user’s input to plain text

e.g., speech, gesture, handwriting etc.
2. NLP units
3. Dialog manager: analyzing the semantic information, keeping the
history and state of the dialog and managing the general flow of the
conversation
4. Task managers: the dialog manager contacts one or more, that
have knowledge of the specific task domain
5. Output generator: producing output

e.g., natural language generator, layout engine etc.
6. Output renderer

e.g., text-to-speech engine (TTS), talking head, robot, avatar etc.
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Example: ELIZA#

The ELIZA program (Weizenbaum, 1966): imitate the responses of
a Rogerian psychotherapist

User: You are like my father in some ways.
ELIZA: WHAT RESEMBLANCE DO YOU SEE?
User: You are not very aggressive but I think you don’t want me to
notice that.
ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE?
User: You don’t argue with me.
ELIZA: WHY DO YOU THINK I DON’T ARGUE WITH YOU?
User: You are afraid of me.
ELIZA: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF
YOU?
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ELIZA#

Use of pattern-matching to process the input and translate it into
suitable outputs

Word Rank Pattern Outputs
alike 10 ?X In what way?

ELIZA doesn’t actually need to know anything to mimic a Rogerian
psychotherapist

So-called Eliza-style fool
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ChatGPT

Trying practical dialogue systems
say, ChatGPT ⇒ say something??

How long have you been asked for a dialogue??
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Question answering

Question answering (QA): answering a question, not a ranked list of
documents but rather a short response (a sentence or phrase)

– retrieval-based approach
– neural QA

Retrieval-based QA may use either a pre-structured database or a
collection of natural language documents (a text corpus such as Web)

Question types: fact, list, definition, how, why, hypothetical, seman-
tically constrained, and cross-lingual questions

AskMSR: Web-based QA system (2002)

Hint: QA can be seen as single turn conversation and implemented
by LMs (see later)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 11 127



Example: DeepQA#

Watson: IBM’s DeepQA
– In 2011, competed on the quiz show Jeopardy
– access to 200 million pages of structured and unstructured con-

tent consuming four terabytes of disk storage, including the full text
of Wikipedia, but was not connected to the Internet during the game
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Conversation model

Denote input utterances x for a user and output responses y for a
bot

A dialog history (context) samples
d = (x,y) = {(xt,yt)}Tt=1 = (x1,y1;x2,y2; · · · ;xT ,yT ),
where at dialog turn t an utterance of tokens xt = (x1t , x

2
t , · · · , xXt

t )
and a response of tokens yt = (y1t , y

2
t , · · · , yYtt ), whose lengths allow

to vary and xit, y
i
t ∈ V for any time step i

P (yt) =

Ty
∑

i=1

logP
(

yit | y<i
t ,x≤t,y<t; fθ

)

The distribution of the generated P (yt) would be indistinguishable
from that of the ground truth P (xt+1) and Yt = Xt+1

⇐ Conversation model (CM)
⇐ transformer-based LM as CM
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ChatGPT algorithm

# Initialize the model

chatGPT = GPT3_5()

# Define conversation context

conversation_history = []

# Start the conversation loop

while True:

# Get user input

user_input = input("User: ")

# Add user input to conversation history

conversation_history.append(user_input)

# Generate response using GPT-3.5 based on conversation history

response = chatGPT.generate_response(conversation_history)

# Add generated response to conversation history

conversation_history.append(response)

# Output response to user

print("ChatGPT:", response)

# Check for conversation termination signal

if user_input.lower() == "exit":

break
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Understanding∗

Levels of understanding
1. Keyword processing: limited knowledge of particular words
or phrases

e.g., Chatbots, information retrieval, Web searching
2. Limited linguistic ability: appropriate response to simple,
highly constrained sentences

e.g., database queries in NL, simple NL interfaces
3. Full text comprehension: multi-sentence text and its relation
to the real world

e.g., conversational dialogue, automatic knowledge acquisition
4. Emotional understanding/generation

e.g., responding to literature, poetry, story narration
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Understanding

Why is understanding hard?
– Ambiguity: mapping is one-to-many
– Rich structures than strings: often hierarchical or scope-bearing
– Strong expressiveness: mapping from surface form to meaning

is many-to-one

Debate: empiricism vs. rationalism
empiricism argued that it is possible to reliably learn correct

context-free grammar
rationalism argued that it is not possible to understand a language

by something like ChatGPT
– Chomsky argued that there must be an innate universal gram-

mar that all children have from birth

Did LLMs show the emergencies of intelligence w/o understanding??
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Understanding

Goal: a scientific theory of communication by language
• To understand the structure of language and its use as a com-

plex computational system
• To develop the data structures and algorithms that can imple-

ment that system

Long way to go
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The dream∗

Trend: LLMs based on deep learning are a foundation model for NLP,
but not for NLU

since deep learning and LLMs are uninterpretable yet

Deep learning: models of how children learn their language just from
what they hear and observe

– apply machine learning to show how children can learn
– to map words in a sentence to real-world objects
– the relation between verbs and their arguments ⇐

Understanding??

The dream: “the linguistic computer”
Human-like competence in language ⇐ strong AI

Is LLMs possible to pass through the Turing test??
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